# Neural Bases of the Development of **Relational Memory**



<sup>1</sup>Institute of Child Development, <sup>2</sup>Center for Neurobehavioral Development, University of Minnesota

**O. Evren Güler<sup>1,2</sup> & Kathleen M. Thomas**<sup>1,2</sup>

### Introduction

Even though behavioral studies of memory in children have shown that declarative/episodic memory continues to develop into young adulthood, very little is known about the neural systems mediating this development. Using fMRI and the subsequent memory paradigm, greater activity during encoding for subsequently remembered items than for subsequently forgotten items has been reported in bilateral prefrontal cortex (PFC) and bilateral medial temporal lobes (MTL). The PFC does not reach adult levels of structure or function until late adolescence and little is known about the functional development of the MTL. The extant fMRI studies of memory development examined recognition memory instead of recall, and memory for items rather than association between items. Both MTL and PFC are particularly involved in memory for contextual details, or

# fMRI Results: Encoding & Subsequent Memory Effects



Both age groups showed increased *activation* for subsequently remembered pairs compared to subsequently forgotten pairs in left prefontal, bilateral parietal, and ventral temporal cortex. **Bilateral Parietal** 

- Left Inferior Prefrontal xyz = -41 31 6
  - Right xyz = 24 54 34**Bilateral Posterior Parahippocampal** & Fusiform Gyri

Left xyz = 27 - 39 - 7 Right xyz = -34 - 43 - 9

Left xyz = -29 - 51 35



### relational encoding.

**<u>Goal</u>**: To examine contributions of MTL and PFC to successful memory encoding and recall for picture pairs across development

# **Participants**

Typically developing children, 2 age groups:

Younger Children 8- to 9-year-olds N = 13 (6 females) mean = 8 years, 8 months range= 8y, 3m - 9y, 4m

UNIVERSITY OF MINNESOTA

**Older Children** 12- to 13-year-olds N = 12 (6 females) mean = 12 years, 8 months range = 12y, 2m - 13y, 3m

\*\* An additional 13 children were tested but excluded due to motion artifact (n=8) or insufficient trials (n=5)

### **Procedure**



**Event-Related Design** 

ISI = average 2000 ms

**Stimulus Duration = 4000 ms** 

(jitter 1500-2500 ms)

4 Runs

20 pairs/Run

TR =2000 ms

**Fixation = 6 TRs** 

2 before each block



- Both age groups also showed increased deactivations in medial prefrontal and parietal cortex for subsequently remembered compared to subsequently forgotten pairs.
- **Left Precuneus** xyz = -5 65 27

Medial Prefrontal & Anterior Cingulate Gyrus  $xyz = 6\ 40\ 10$ 



Within a subset of these two regions that showed deactivation, younger children showed significantly more signal change than older children.

# **fMRI Results: Developmental Effects on Hippocampus**



**Successful Encoding > Baseline** 

Left Anterior Hippocampus (xyz = -20 - 21 - 10)

Older children activated this region significantly more for successfully encoded pairs.

*Younger* children did not show a significant signal change in this region.

#### Successful Recall > Baseline

Left Anterior Hippocampus (xyz = -22 - 19 - 10)

This region was activated in the whole group during successful recall. However, *neither* group showed a significant signal change when analyzed separately.











#### **Imaging:**

**3T Siemens Trio** 

Structural: MPRAGE, T1-weighted, 240 sagittal slices (1x1x1 mm voxel) [TR=2530, TE=3.65, Flip = 7°, Matrix = 256 x 256, FOV = 256, Slice thickness = 1 mm, Scan duration = 10 min, 49 sec]

<u>Functional</u>: Gradient echo EPI, T2\*-weighted, 34 axial slices (3.125 x 3.125 x 3 mm voxel) [TR=2000, TE=28, Flip = 80°, Matrix = 64 x 64, FOV=200, Slice thickness = 3 mm, Repetitions = 131, Scan duration = 4 min, 26 sec]

#### **Image Data Processing:**

BrainVoyager QX (version: 2.0.8)

Preprocessing: slice scan time correction, linear trend removal, high-pass temporal filter for non-linear drifts, spatial smoothing with a 9mm Gaussian kernel, and 3D motion correction

Statistical contrasts tested with GLM Age group included in a second level All group-level analyses with random effects modeling (DV =% change in signal)

Significance criteria: 10 contiguous functional voxels; p < .05 for group-level analyses

#### Notes: 1) Regions of activation outside of hippocampus have been masked. 2) Additional activity in posterior hippocampus but contiguous with visual stream activity.

### **fMRI Results: Developmental Effects of Recall Success**



Both age groups showed activity in the Inferior Parietal Lobule, however, younger children activated a significantly larger region (xyz = -32 - 60 37) on the left compared to older children during successful recall. (Successful Recall v. Baseline > Unsuccessful Recall v. Baseline)

Younger Children





Compared to younger children, older children showed additional regions of activity in the Left Inferior Frontal Gyrus (xyz = -38 38 10) and Ventromedial Prefontal Cortex (xyz = -5 39 -16) during successful recall. (Successful Recall v. Baseline > Unsuccessful Recall v. Baseline)

### **fMRI Results: Comparing Encoding to Retrieval**





xyz = -53 -32 22

In Superior Frontal, Medial Frontal (not shown in figure), Inferior Parietal and Superior Parietal regions, older children showed greater activity for successful recall than for successful encoding. Younger children showed no difference in these regions for this comparison. (Successful Recall v. Baseline > Successful Encoding v. Baseline)

Right posterior **Hippocampus** (xyz = 25 - 38 - 1) **Right Parahippocampal Gyrus** (xyz = 25 - 40 - 4)

Younger children showed greater activity for encoding than retrieval however, the older children showed the opposite pattern, with greater posterior hippocampal activity for retrieval than for encoding.



#### Note: Regions of activity outside of shown regions have been masked.

### "Remembered" items were defined as items for which the participant indicated recall with button press during the silent retrieval phase and gave correct response during the verbal retrieval phase.

**"Forgotten"** items were defined as items for which the participants did not press the button during the silent retrieval phase and failed to give a response during the verbal retrieval phase.

### **Behavioral Results**



Older children showed significantly better performance in the paired-associates cued-recall task compared to the younger children.

#### email: kava0047@umn.edu http://education.umn.edu/icd/CDNLab/

### Conclusions

- Behavioral accuracy in the paired-associates cued-recall task was significantly worse for the 8- to-9-year-old children than the 12- to- 13-year-old children.
- We observed an activation pattern for the subsequent memory effect that was similar to what was previously reported in the literature for adults. Both age groups also showed memory related deactivations (stronger effect for the younger group) in regions that were previously reported as being part of the default mode network.
- Older children activated the left anterior hippocampus for successful encoding (compared to fixation baseline).
- During successful recall, younger children demonstrated greater activation in the parietal regions, whereas older children showed greater activity in the prefrontal regions.
- The two groups differed in the way they recruited regions in the frontal cortex, parietal cortex and the posterior hippocampus/parahippocampal regions during encoding versus recall.

This research is supported by: - A seed grant from the Center for Neurobehavioral Development at the University of Minnesota - Postdoctoral Fellowship to the first author (National Institutes of Health, NRSA ,T32 MH73129) - Center for Magnetic Resonance Research at the University of Minnesota (NIH BTRR-P41 RR008079, P30NS057091, and the MIND Institute)